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AFIT/GA/ENY/90D-14
Abstract

-~ An expression for the semi-major axis as a function of time may be determined by
performing a series reversion and inversion of Lambert’s Time Function. Since the
resulting series contains a singularity, it is desirable to perform only a reversion on the
original series to obtain an expression for the inverse of the semi-major axis. Using a
Lagrange expansion to obtain the coefficients for this series is very computer intensive.
Therefore, alternative methods are presented. Also, each series was expanded into a
continued fraction which provided greater accuracy than the series using the same num-
ber of coefficients. The accuracy was found to be dependent upon the number of series

coefficients used, the transfer time, and the transfer angle.




A NUMERICAL INVESTIGATION OF THE SERIES REVERSION/INVERSION AND
SERIES REVERSION OF LAMBERT'S TIME FUNCTION

I. Introduction

One of the classic problems in orbital mechanics is the determination of orbital
parameters using two position vectors and the time of flight of a satellite. In 1761,
Lambert developed a theorem (later proved by Lagrange) which states the time to tra-
verse an elliptic arc (also true for any conic trajectory (2:: )) is dependent only on the
semi-major axis, the perimeter of the triangle formed by the initial and final position
vectors, and the chord joining the initial and final points of the arc. The geometry is
shown in Figure 1. Throughout this research the radius vectors were held constant,

ry=r,=1 auand the transfer angle was varied from 10 to 360 degrees.

Figure 1. Geometry of Lambert’s Theorem

The significance of Lambert’s theorem can be seen in Figure 2. Consider the
elliptic arc joining the fixed points P and Q. According to Lambert's theorem the shape
of the transfer ellipse from P to Q may be altered without changing the time of flight
by moving the foci F and F° and keeping the semi-major axis constant. Therefore, the

focus £ may be moved to F, and the focus F"to F} without changing the time of flight.




As the focus F is moved counterclockwise and the focus £*is moved clockwise, the
ellipse becomes very flat until the foci are at F,and F3. The time of flight has not
changed and the orbit is now rectilinear. Thus, the time ¢ may be computed by elemen-

tary methods.

Figure 2. Geometrical Significance of Lambert’s Theorem (2:72)
To obtain Lambert’s Time Function the energy equation for a two-body orbit may

dr)? 21
(&) -(3-3) M

where r is the radial distance between the two bodies, p is the gravitational constant, a is

be written as

the semi-major axis, and ¢ is the time. Since
QF ,+ PF,=r,+r, and QF,-PF,=c
then
PF,=s-c¢c and QF,=s
where s=(r,+r,+c)/2. Integrating Eq (1) produces
1 r* rdr
e .

Employing the following change of variable:




A BN BN N N BN BN B B =

r=a(l-cosd)

3 ]
-,l%/’; (l-cosd)dd

Eq (2) may be written as
where

This produces

a3
f'\/I[(a-Smd)'(B-SinB)] (3)

This is Lambert’s Time Function for an elliptic trajectory with a transfer angle less than
nand a flight time less than the minimum energy transfer time. A minimum energy
transfer is an elliptical transfer where a =s/2 . It may also be shown for a transfer

angle greater than n Lambert’s Time Function is given by

a:!
t-,/r[(a-sina)\*([&-sin[s)] (€))

This form of Lambert’s Time Function is difficult to use since the transfer time is
often known and the semi-major axis is the parameter that needs to be determined.
Since the equation is transcendental in the semi-major axis root finding techniques are
employed in order to determine the semi-major axis. A method of expressing the semi-

major axis as a function of the transfer time is desired.

With the use of hypergeometric functions, Lambert's Time Function for an ellipti-

cal trajectory may be written as an infinite series:

AR (1 i [ORE NG
) B & )

where




is the parabolic transfer time. This is the flight time of an object traveling on a para-
bolic trajectory between two position vectors where the origin of the position vectors is
the focus of the parabola. Lambert’s Time Function for a hyperbolic trajectory may also
be expressed as an infinite series identical to Eq (5) except in the sign of the argument,

1. e., (—ﬁ) , and the series coefficients are identical.

A series reversion and inversion has been performed on Eq (5) in order to obtain

the semi-major axis as a function of time (4:9-13):

(ZTQ)=BlT"+BzT°+B3T'+B,T2+... (6)

The coefficients for this series, referred to as the RI series, are obtained using a numer-
ically efficient matrix formulation. One purpose of this research is to investigate the
accuracy of the RI series. Due to the existence of a singularity in the RI series at T=0
it is desirable to perform only a series reversion on Eq (5) to obtain the inverse of the

semi-major axis as a function of time:
(2—8‘;)=alT+a2T2*03T°+a4T’+... (7)

This series will be referred to as the R series. Several methods of obtaining the coeffi-

cients for the R series are presented as well as the accuracy of each method.




I1. Analytical Development

Measuring the Accuracy

The accuracy of each method was evaluated in the following manner: 1) For a
given geometry and transfer time a value for the semi-major axis was obtained using Egq
(6) or (7) for a given number of terms; 2) The time was calculated from Eq (3) or (4)
using the value for semi-major axis obtained in step 1; 3) The absolute value of the
difference between the calculated time and the true time was then calculated. The value
obtained in step 3 is called the Time Residual and was employed as a measure of the

accuracy of each method.

Calculating the RI Series Coefficients

’

To calculate the coefficients for the RI series, multiply Eq (6) by Li !T to obtain:

2a/

T-Bl(é%)'fBz(i)Th.. (8)

Substituting the series solution for T given by Eq (5) into Eq (8) yields:

N s 2 s 3
(5) ) - alz) o
s s s s 2 s 3
BI(Z)+32(2_G)<A1(2—Q‘)+ AZ(Z) +A3(2'—a) +__‘>+,_‘ (9)

Now differentiate Eq (9) with respect to (é’;) to obtain:

A +24 (—s 34 i)z+ -
' A\ 2a N\ 2a
2 3
S s s
e af) 4l 5) ) ) o)
2\ 2a ! 2\ 2a N\ 2a

Evaluating Eq (10) at (zia) = 0 yields:
A, =B,

Taking three more derivatives and evaluating each at (zia) = 0 produces the following:




A, = A3,
A, = A,B,+ AB,
A, = A;B,+2A A,B,+ AlB, (1)
Each successive derivative becomes increasingly more complex. Solving Equation set

(11) for the B, coefficients yields:

442
B = ———
2 Ty,
A, Ay- A2
B
3 A;lg

A2A,-3A, A A + 243

B, = I (12)
Equation set (12) may be expressed in matrix form as:
I L 0 0O 0 O |
Ay
B - A 1 A
2 = — 0 0 0 2
B, A Aj Ay
B, )=|2A%3-4,4, -24, 1 A, )=Q{A} (13)
s 4 - 0 0
. A' Al Al .
Bnl 0 Al‘]
1
L A5

A method of generating the Q matrix in Eq (13) has been discovered (4:12).
Knowing the elements of the first two rows of the matrix all of the remaining elements

may be obtained using the following procedure:

1 1
1. qu=5 - qa = -4_3 , Chz"‘;‘f

2. Gy =(qea Q20 Q) Gy 0 Q210 s et 1) s 12j>2
3. qu=~74(q2 Qo Q) (A2, Ay AD)

4. B.i=(qu.qe.-..qu) (A2, Az, o A)




The first element of each row must be calculated last, since it is dependent upon all of

the other elements in that row. For example, to calculate B, first form element q,; :

Q3 =(q2.-90)°(q12.922)

(A 1 oLj_L
A3 A, AT

then ¢4, :

Qaz =(921-9011)°(Q@11.921)

oA LY (L 4. 24,
A3 A, A, A3 At

then qg, :

1
qn =~ A—|((QB2'Q33)'(‘42’ 433}

1{ 2A%3 A, 2A%3-A,A,
- + = "
A7 A3

T4, A3

Now that all of the elements of the third row are known, B, may be calculated by taking
the dot product shown in step 4. Each successive coefficient may be calculated by
repeating steps 2, 3, and 4. The first 26 coefficients for a transfer angle of 60 degrees

are listed in Table 1.




TABLE 1: RI Series Coefficients for 8 = 60°

=]

B,

3.476627109438971E-001
5.601954800296930E-001
1.569332354004166E-001
-2.072127624535575E-002
1.341485080981992E-002
-9.591469176204521E-003
5.932190937546468E-003
-3.159031868854800E-003
1.491664314059560E-003
-6.607117824078135E-004
3.008808653647832E-004
-1.524580592486835E-004
8.421050704976452E-005
-4.626845621302778E-005
2.360695540204460E-005
-1.103113408618128E-005
4.944780755522515E-006
~-2.408810757970059E-006
1.335338311037049E-006
-1.428209543519188E-006
-2.160844815080054E-006
2.140513606718741E-005
-1.160819447250105E-004
6.927153735887259E-004
-3.255901276133955E-003
1.382574881426990E-002

[ ST ST VY Y Y ) i U i U,
O\M&uu—o\ooo\.@m“w“_oom\lO\v-AwN-—

Calculating the R Series Coefficients
The coefficients for the R series may be obtained by using the Lagrange expansion
theorem (1). Letting x -(2—’;) , Eq (5) may be written in the form:

x=x,+To(x) (14)

with x,=0, where

1
A,"’AZX*A;,XZ"'...

$(x)= (15)

and the A4, terms are the coefficients in Eq (5). Now x may be expressed as a power

series in T using the Lagrange expansion theorem with the coefficients given by

A~

a,= ,;d“—“—x,,_w(—\') .

-xg




The following recursive algorithm was used to calculate the coefficients

(3:212-215). Define

k

D:=d So(x)" for k=0.,1,....n-1
X
and
d*$(x)
() o\ =
$(x) dxt
¢(K)(x°)-¢gk)
The algorithm now becomes
(k) _ _ S k!

1 (k-0)
N T S TR

k-1 -1y (k- ))
D:-nz DY ey for k=1,
1-0 ]
beginning with the initial values
i
D= o®a
(1] ¢0 Al
The coefficients can now be calculated:
| .
an = FDn-l
Algebraically, the first five coefficients are
a ! a,=- ik
YA, L T
Ay A}
q,=—-—+ 2_.
oAy A
A, _A,A, _A}
== S+S—5 -5
AS AS A]
As 6A,A+3A3 AZA Al
agm -+ 01 2 14
A? Al Aj Aj
9

of Eq (7)

(16)




Each successive coefficient becomes increasingly more complex. Table 2 lists the R

series coefficients for a transfer angle of 60 degrees.

TABLE 2: R Series Coefficients for 8= 60°

n QAn

1 2.876351039445733
2 -4.634718652746828
3 6.169638843024049
4 -7.677730891005001
5 9.199104623157812
6 -10.731091604324702
7 12.266169580346382
8 -13.800785808657999
9 15.33448795696568 1
10 -16.867784047477109
11 18.401065122700818
12 -19.934436495815678
13 21.467864111717599
14 -23.001301593856162
15 24.534730221361581
16 -26.068150929596808
17 27.601569133880563
18 -29.134987387096338
19 30.668404962779338
20 -32.201822741326474
21 33.735279494304024
22 -35.269089203411149
23 36.804909127457499
24 -38.350692931914622
25 39.939922586593518
26 -41.694275534386783

Since the recursive algorithm used to calculate the R series coefficients is slow in
terms of computer time a more efficient method is desirable. The algebraic form of the
coefficients were formulated into a matrix in order to determine whether a pattern
existed such as for the RI series. Alternate methods of obtaining the R series
coefficients examined the behavior of the coefficients as functions of n and ©.
Additionally, each series was expressed as a continued fraction so that fewer coefficients

would be required in order to achieve the same accuracy as the series.

10




Matrix Method

Equation set (16) may be expressed in the following matrix form:

!
= 0 0 0 0
A°
1
0 - 0 0 0
a, A3
a, 24, 1
. 0 E ot 0 0
3 Ay ERN
a )=l 543 54, 1 0
a A7 AS A3
S 1 1 1
o 1443 34,A;-21A42 64,
a 13 A° AT A4S
t 1y 1 ] 1
0
0

N

4 =P(An)

S N S N
) w

> .

Since the first row and the first column of P contain all zero elements, except the first

element, we can look at the submatrix P "

Mo
— 0 0 0
A4,
24, ]
-3 = 0 0
1 1
542 SA, 1
pro-1| At A a °
12 1 1 1
“I' 1443 214%2-34,4;, 64, 1
A7 b A3 A

The first column of the R matrix has the general form:

RGO OIS
TN TR DTS

and the diagonal has the general form:

|— o

=




R =

1
I A‘]
For 1> 2, the element to the left of the diagonal element has the general form:

(i+2)A4,

R
A:{l

[ L

These were the only general terms that were ascertained. Further investigation may

reveal a pattern that would be beneficial in order to generate the entire matrix.

Approximating the R Series Coefficients

Two methods of approximating the R series coefficients were investigated. The
first method (Method A) involved obtaining the coefficients as a function of n. The
coefficients were plotted versus n for each transfer angle. A least squares analysis was
then employed to fit a polynomial expressing a,as a function of n to each curve. The
second method (Method B) involved obiaining the coefficients for the R series as a
function of the transfer angle. Each coefficient, a, through a,,, was plotted versus the
transfer angle. Once the plots were obtained, a least squares analysis was performed to

obtain a polynomial in the transfer angle for each «,.

Continued Fraction Expansion

The final method examined involved expanding the series into a continued frac-
tion. This method was applied to both the R series and the RI series. A continued
fraction typically provides the same accuracy as the series but uses fewer coefficients.

The general form of a continued fraction is

b, by b, b;
Qo+ —F—=| Qg —, —,—....
a,+ — a, a; as

a*ns
2
ay

In general, the function

Clo*Cp X+ LR
Flx)= 10 nxX+cpx (17)

Coo*Co X+ CopXx?+ ...

may be expanded into the continued fraction

12




[of C CopgX Cry X C, X
f(x)-———'%;—-[o:c—lo.%—.i ..... CL] (18)
Coo* =S 00 o €20 1.0
Cig*
v20
The coefficients c,, are computed recursively by the formula
C,. C,;. .
Clk=— 1-2.0 IZ,RI‘ (19)
C,o10 €1 ke
where j22.
The RI series may be written as
2a Bl
e —+ (T 20
s T f(r (20)
and the R series may be written as
S~ T {(T) (21)
2a
where
f(T)=c+c, T+c,,T*+... (22)

For the RI series c,,=B,., and for the R series ¢,,=a,., for k=0,1,2, ...
Eq (22) is of the form of Eq (17) where
Coo=1 and Cor =0 for k=1,2.3...

The coefficients for the continued fraction expansion may now be calculated using Eq

(19). If the continued fraction is terminated so that

.....

Cio €T C3T c,‘oT}

(1) i [0' (23)
Q« '

Coo € €20 Ck-1.0
Pk . . .

then - is termed the kth convergent of the continued fraction. The convergents are

found using the following formula:

Pt-akpk-l+bkpk-2

— = 24
Qr aQu + 0,0, (2)

where

13




b,=cq. by=c,oT k>1
and
Py=0. P, =b,. Qu=1, and Q=1
Algebraically, the first four convergents are:

P,y P_g_ cto

—=c, _—
Q, Q2 cp-cn T

2
Py —cpent(Crpciz-ci))T
Q3 —c*rc T

2 2 _ 3 2
P, (C1oCT1 = Cl0C12) + (—2€C 1€, €12+ €Y+ CoC13) T

(25)
Qs (cf, =€1C12)+(CroCia— €y c)T +(c-cp63)T?

Equation set (25) shows the kth convergent requires up to the coefficient ¢, ., .

This means for the RI series the coefficients up to B,., are required and for the R series
the coefficients up to a,are required. The accuracy of the kth convergent was com-

pared to the accuracy of each series using k terms.
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I11. Numerical Investigation

In this section all of the figures shown are for a transfer angle of 60 degrees. All
other transfer angles examined were similar and representative samples are shown in the
indicated appendix. To measure the accuracy, the non-dimensional time, T (defined in

Eq (5)), was varied from -.95 to 1.00.

Accuracy of RI and R Series
Using the method described in the previous section, the accuracy of the RI and the

R series was evaluated.

Figures 3a and 3b show plots of the Time Residual versus T for a transfer angle of
60 degrees using 5 and 15 terms of the RI series. Plots for other transfer angles are in
Appendix A. Note the lack of a data point at T =0. This is due to the singularity
caused by the first term of the series. Five terms of the series provides good accuracy
for iT] <.50 while 15 terms provides good accuracy over the interval |T| < .85 The
absolute value of the maximum Time Residual for transfer angles from 30 to 360
degrees is plotted in Figures 4a - 4¢ for various intervals of time. As|7! - 1 the maxi-
mum absolute value of the Time Residual increases for a constant number of terms.
Therefore, as | 7| - 1 additional terms are required to maintain a specified degree of
accuracy. For [T <.25 15 terms provides one to two orders of magnitude greater accu-
racy than 5 terms. For [T] <.50 15 terms provides approximately three orders of magni-
tude greater accuracy than 5 terms. For |7| <.85 15 terms provides two to three orders
of magnitude greater accuracy than 5 terms up to about 240 degrees. Beyond 240

degrees there is only about one order of magnitude difference between § and 15 terms.
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Plots of Time Residual versus T for a transfer angle of 60 degrees using 5 and 15
terms of the R series are shown in Figures 5a and 5b. Plots for other transfer angles are
in Appendix B. The accuracy of the R series behaves similarly to the RI series. How-
ever, 5 terms provides good accuracy for |T| < .25 which is a much smaller interval than
the RI series. Fifteen terms also provides good accuracy over a smaller interval than 15
terms of the RI series: |7|<.50. Figures 6a and 6b show plots of the absolute value of
the maximum Time Residual versus transfer angle for various time intervals. For
'T1<.25 15 terms provides about four orders of magnitude greater accuracy than 5
terms. However, the R series is not as accurate as the RI series utilizing the same

number of terms and has a smaller interval of convergence.
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Method A: R Series Coefficients as a Function of n

Figure 7 shows the absolute value of a,is approximately a linear function of n for

n=1 to approximately n=25. A least squares analysis was performed using 20 terms
and the first 26 terms for a transfer angle of 60 degrees in order to obtain a polynomial
equation. The residual shown in Figures 8a and 8b is the difference between the value
of a,calculated using the polynomial and the true value. In Figure 8a the polynomials
were calculated using the first 20 terms and in Figure 8b the polynomials were calcu-
lated using the first 26 terms. Using 20 terms resulted in slightly smaller residuals. In
order to reduce the residuals for the first few terms two polynomials were found. The
first polynomial was for n=1 to n=m+1 where m is the degree of the polynomial.

The second polynomial was for n=m+2 to n=20.
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Figure 7. Absolute Value of a,vs. n for a Transfer Angle of 60°
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Transfer Angle of 60° Using 2§ Terms

To determine which degree of polynomial would provide the most accurate results,

the absolute value of the "a Residual® (defined as the difference between the semi-major
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axis calculated using the true coefficients and the value calculated using the polynomial
approximation) was plotted versus 7. In order to plot the absolute value of the a
Residual on a logarithmic scale two plots were required: one for positive values of T
and the other for negative values of T. Polynomials of degree two through degree nine

were evaluated. Figures 9 - 11 show these plots using 5, 10, and 15 terms respectively.
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Figure 9a. Absolute Value of the a Residual vs. Negative 7 for a

Transfer Angle of 60° Using 5 Terms with the Coefficients
Calculated Using Polynomials of Degree 2 - 5
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Figures 9 - 11 indicate the third degree polynomial is the most accurate approxi-
mation over the time interval 7=-.95 to 1.00. Figures 10b and 10d show that at
approximately T =.80 all of the polynomials give poor results using 10 terms.
Checking the a Residuai using 6, 8, 12, and 18 terms showed a similar spike at the same
value of T. Therefore, when using this method of approximating the R series coeffi-

cients only an odd number of terms should be used.

The accuracy of this approximation using the third order polynomial was analyzed
in the same manner as the true series. Figures 12a and 12b show the Time Residual
versus T for a transfer angle of 60 degrees. Plots for other transfer angles are in
Appendix C. The maximum absolute value of the Time Residual versus transfer angle
for 5 and 15 terms is shown in Figures 13a and 13b. For |T|<.25 15 terms provided
two to four orders of magnitude greater accuracy than 5 terms. Recall that using the

true coefficients resulted in a nearly constant four orders of magnitude difference.
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15 Terms of the R Series, Method A
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Method B: R Series Coefficients as a Function of Transfer Angle

Employing the least squares analysis an eighth order polynomial was found to best
fit the plot of a, versus transfer angle. Therefore, an eighth order polynomial was then
fit to the plots of the remaining 15 coefficients. The variance increased slightly with
each successive coefficient. Figures 14a - 14d display the plots for the first four coeffi-
cients. The plots for the fifth coefficient to the sixteenth are in Appendix D. The
Coefficient Residual (the absolute value of the difference between the true and the
approximate coefficient) versus transfer angle is plotted in Figure 15. Each curve has
nearly the same sinusoidal shape. The distance between adjacent curves decreases with
each successive coefficient. See Appendix D for a plot showing Coefficient Residual for

the fifth through the eighth coefficients.
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The accuracy of this approximation was analyzed as before. Figures 16a and 16b

show the Time Residual versus T for a transfer angle of 60 degrees. Plots for other
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transfer angles are in Appendix E. Figures 17a and 17b show the maximum absolute
value of the Time Residual versus transfer angle for 5 and 15 terms. The difference in
accuracy between 5 and 15 terms is not as great using this method as it is using the true

coefficients or Method A. For some transfer angles 5 terms is more accurate than 15.
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Figure 16a. Time Residual vs. T for a Transfer Angle of 60° Using 5

Terms of the R Series, Method B
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Continued Fraction Expansions

In the continued fraction expansion of the RI series the P.and Q, terms quickly

approached zero as k increased. The twelfth convergent was the highest that could be
calculated before a singularity was reached. The P.and Q, terms for the R series
quickly increased as k increased. The highest convergent that could be calculated was
the eighteenth. Therefore, the fifth and tenth convergents were selected to compare

with the series using 5 and 15 terms for consistency.

Figures 18a and 18b show the plot of the Time Residual versus T for a transfer
angle of 60 degrees using the continued fraction expansion of the RI series. Plots for
other transfer angles are in Appendix F. The accuracy is much better for long elliptical
transfers (positive T) than the RI series itself. Figures 19a - 19¢ show the maximum
absolute value of the Time Residual versus transfer angle for the fifth and tenth conver-
gents. Up to about 250 degrees there is very little difference between the accuracy of

the fifth and tenth convergents for | 7| <.25. However, for transfer angles greater than
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250 degrees the tenth convergent is one to two orders of magnitude better. For ITI<£.50
and | T| < .8S the tenth convergent is more accurate than the fifth. However, for some

transfer angles the difference is very small especially over the interval |T| < .8S.
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Figure 18a. Time Residual vs. T for a Transfer Angle of 60° Using

the 5th Convergent of the C. F. Expansion of the RI Series
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Figures 20a and 20b show the plots of the Time Residual versus 7 for a transfer
angle of 60 degrees using the fifth and tenth convergents of the continued fraction
expansion of the R series. Plots for other transfer angles are in Appendix G. The tenth
convergent provides good accuracy for long elliptical transfers while the accuracy of the
fifth convergent begins to fall off at approximately 7 = .6. Figures 21a - 21¢ show the
maximum absolute value of the Time Residual versus transfer angle for the fifth and
tenth convergents. For {T| <.25and |T| £.50 the tenth convergent provides one to two
orders of magnitude greater accuracy in most cases. However, for transfer angles less
than or equal to 30 degrees there is very little difference over the interval |T|<.25. For
IT|< .85 the accuracy of the tenth convergent is two to three orders of magnitude better
for transfer angles less than 90 degrees. At about 230 degrees the fifth convergent is

actually more accurate than the tenih.
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Comparison of Methods
The RI series is more accurate than the R series by two to three orders of magni-
tude when using the same number of terms as shown by the plots in Figures 22a and

22b. The R series requires many more terms be used in order to obtain the same

accuracy as the RI series.
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Figure 22a. Maximum Absolute Value of the Time Residual vs. Trans-

fer Angle Using 5 Terms of the R Series and the RI Series
for T=-.25 to .25

Using the alternate methods to calculate the R series coefficients did not introduce
a large amount of error when 5 terms were used. The accuracy of Method A was nearly
identical to the accuracy when the true coefficients were used. This is shown in Figure
23a. The accuracy of the alternate methods deteriorated when more terms of the series

were used as shown in Figure 23b.
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Figure 24a shows that the fifth convergent of the continued fraction expansion of
the RI series is mare accurate than using 5 terms of t*e series for transfer angles less
than 260 degrees. From 260 to 360 degrees the accuracy of each is approximately equal.
Figure 24b illustrates the efficiency of the continued fraction expansion. The tenth
convergent requires eleven coefficients and provides nearly the same accuracy as 15

terms of the RI series.
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The continued fraction expansion of the R series provided approximately three
orders of magnitude greater accuracy than the R series using five coefficients for each.
This is shown in Figure 25a. Figure 25b indicates the continued fraction expansion still
provides approximately three orders of magnitude greater accuracy with the tenth con-

vergent compared to 15 terms of the series.
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Figure 25a. Maximum Absolute Value of the Time Residual vs. Trans-
fer Angle Using § Terms of the R Series and the 5th
Convergent of the C. F. Expansion of the R Series for
T=-.25 to .25

Using the continued fraction expansion, the R series approached the accuracy of
the RI series. For the fifth convergent, the accuracy of the R series is nearly identical
to the RI series for transfer angles greater than 250 degrees. Below 250 degrees the RI
series is still approximately an order of magnitude more accurate. This is shown in
Figures 26a and 26b for two time intervals. When the tenth convergent is used, the
accuracy of the two series is nearly identical for T=-.85 to .85 and is identical for

T=-.25 to .25as shown in Figures 27a and 27b.
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Figure 26b.
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Figure 27b.
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V. Conclusions

Performing a series reversion on Eq (5) avoids the singularity in the RI series.
However, the R series is not as accurate as the RI series with the same number of terms.
Another disadvantage of the R series involves calculating the coefficients which is very

computer intensive.

Alternate methods of calculating the R series coefficients using polynomial approx-
imations were found to be nearly as accurate as the true R series coefficients. However,

these methods are empirical and do not provide any advantage.

Expanding each series into a continued fraction provided the most accurate method
of calculating the semi-major axis. The continued fraction expansions were most not-
ably more accurate than each series for long elliptical transfers approaching the mini-
mum energy transfer time. The R series continued fraction expansion was as accurate as
the RI series continued fraction expansion with the benefit of no singularities. For a
specified degree of accuracy the continued fraction expansion is more advantageous than

the series because fewer series coefficients are required.

The accuracy of each of the methods presented was dependent upon the number of
series terms or the order of the convergent, the transfer time, and especially the transfer
angle. The best accuracy obtained in this study was a Time Residual on the order of
10°". For a given number of terms or convergent this varied by as much as several
orders of magnitude depending upon the transfer time and transfer angle. The largest
reduction in accuracy usually occurred for transfer angles between 270 and 350 degrees.
As T approached the limit for which the number of terms or convergent was able to
provide good results the accuracy was very sensitive to the transfer angle. For transfer
times well within the limit the accuracy did not vary by more than one order of magni-

tude.




V. Recommendations for Further Study

During the course of this research the radius vectors were held constant while the
transfer angle was varied. Further analysis of the accuracy may be accomplished while
varying the radius vectors and the transfer angle. Also, further analysis of the accuracy

may reveal the optimum number of terms to use.

In order to take full advantage of the R series, a more efficient method of obtain-
ing the coefficients must be found. Further investigation of the R matrix may reveal a

pattern that would be beneficial in order to generate the entire matrix.

While the continued fraction expansion may appear to be an attractive method of
calculating the semi-major axis it has the disadvantage of being computer intensive.
Therefore, it may be desirable to approximate the continued fraction using a Chebyshev

polynomial.
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Appendix A. Time Residual vs. T Plots for RI Series
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Figure 28a. Time Residual vs. T for a Transfer Angle of 150° Using
5 Terms of the RI Series
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Figure 28b. Time Residual vs. T for a Transfer Angle of 150° Using

15 Terms of the RI Series
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- RI SERIES, 5 TERMS
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Figure 29a. Time Residual vs. T for a Transfer Angle of 240° Using
5 Terms of the RI Series
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Figure 29b. Time Residual vs. T for a Transfer Angle of 240° Using

15 Terms of the RI Series
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Figure 30a. Time Residual vs. 7" for a Transfer Angle of 330° Using
5 Terms of the RI Series
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Figure 30b. Time Residual vs. T for a Transfer Angle of 330° Using

15 Terms of the RI Series
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l Appendix B. Time Residual vs. T Plots for R Series
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Figure 31a. Time Residual vs. T for a Transfer Angle of 150° Using
I 5 Terms of the R Series
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Figure 31b. Time Residual vs. T for a Transfer Angle of 1S50° Using

15 Terms of the R Series
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Appendix C. Time Residucl vs. T Plots for Method A
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Figure 34a. Time Residual vs. T for a Transfer Angle of 150° Using
5 Terms of the R Series, Method A
5E— R SERIES (METHOD A 15 TERMS
3-58-001 THETA = 150 DEGRE .
3.0E-001
2.56-D01
o 2.0E-001
<
3
2 1.5e-001
&
., 1-0E—001
=
F 5.0e-002 4°, ’
~1.4E-017 ."to-coooooc-vncooooc---.o'.
-5.0E-002
—1.0E~001 Frrrr T
-~1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
TIME (t/tp — 1)
Figure 34b. Time Residual vs. T for a Transfer Angle of 150° Using

15 Terms of the R Series, Method A
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Figure 35a. Time Residual vs. T for a Transfer Angle of 240° Using
5 Terms of the R Series, Method A
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Figure 35b. Time Residual vs. T for a Transfer Angle of 240° Using

15 Terms of the R Series, Method A
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Figure 36a. Time Residual vs. T for a Transfer Angle of 330° Using
5 Terms of the R Series, Method A
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Figure 36b. Time Residual vs. T for a Transfer Angle of 330° Using

15 Terms of the R Series, Method A
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Appendix D. Plots of a,vs. Transfer Angle
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Appendix E. Time Residual vs. T Plots for Method B
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Figure 39a. Time Residual vs. T for a Transfer Angle of 150° Using
5 Terms of the R Series, Method B
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Figure 39b. Time Residual vs. T for a Transfer Angle of 150° Using

I5 Terms of the R Series, Method B
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Figure 40a. Time Residual vs. T for a Transfer Angle of 240° Using
5 Terms of the R Series, Method B
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Figure 40b. Time Residual vs. T for a Transfer Angle of 240° Using

15 Terms of the R Series, Method B
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Figure 41a. Time Residual vs. T for a Transfer Angle of 330° Using
5 Terms of the R Series, Method B
1.26— - R SERIES (METHOD B), 15 TERMS
2E-001 h THETA = 330 DEGREES o
1.0E~001 3
8.0E-002
2 6.0£-002 3 -
Q -
» 3
W 4.0E-0025 .
L : .
= 2.0E-002 4 .
b - .
j L]
5_9E—O18£ ".oot-.---lo.t-n-tn....l.
~2.0E-002 J
—4.0E—002-‘lrvl]Ylvr]llvrIVVIl]lvlrllxler‘vFI|v||l|
-1.00 -0.75 -0.50 -0.25 0.00 0.2% 050 0.75 1.00
TIME (t/tp — 1)
Figure 41b. Time Residual vs. T for a Transfer Angle of 330° Using

15 Terms of the R Series, Method B
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Appendix F. Time Residual vs. T Plots for C. F. Expansion of RI Series
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Figure 42a. Time Residual vs. T for a Transfer Angle of 150° Using
the 5th Convergent of the C. F. Expansion of the RI Series
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Figure 42b. Time Residual vs. T for a Transfer Angle of 150° Using
the 10th Convergent of the C. F. Expansion of the RI
Series
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Figure 43a. Time Residual vs. T for a Transfer Angle of 240° Using
the 5th Convergent of the C. F. Expansion of the RI Series
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Figure 43b. Time Residual vs. T for a Transfer Angle of 240° Using
the 10th Convergent of the C. F. Expansion of the RI
Series
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Figure 44a. Time Residual vs. T for a Transfer Angle of 330° Using
the 5th Convergent of the C. F. Expansion of the RI Series
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Figure 44b. Time Residual vs. T for a Transfer Anglz of 330° Using

the 10th Convergent of the C. F. Expansion of the RI
Series
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Appendix G. Time Residual vs. T Plots for C. F. Expansion of R Series
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Figure 45a. Time Residual vs. T for a Transfer Angle of 150° Using
the 5th Convergent of the C. F. Expansion of the R Series
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Figure 45b. Time Residual vs. T for a Transfer Angle of 150° Using
ghe_ 10th Convergent of the C. F. Expansion of the R
eries
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- CONTINUED FRACTION EXPANSION OF R SERIES
¢-58-003 5th CONVERGENT, THETA = 240 DEGREES
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Figure 46a. Time Residual vs. T for a Transfer Angle of 240° Using
the 5th Convergent of the C. F. Expansion of the R Series
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Figure 46b. Time Residual vs. T for a Transfer Angle of 240° Using
the 10th Convergent of the C. F. Expansion of the R
Series
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2.56-002 CONTINUED FRACTION EXPANSION OF R SERIES
5th CONVERGENT, THETA = 330 DEGREES
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Figure 47a. Time Residual vs. T for a Transfer Angle of 330° Using
the 5th Convergent of the C. F. Expansion of the R Series
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Figure 47b. Time Residual vs. T for a Transfer Angle of 330° Using

the 10th Convergent of the C. F. Expansion of the R
Series
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